Extensions 1→N→G→Q→1 with N=C22×D5 and Q=Dic3

Direct product G=N×Q with N=C22×D5 and Q=Dic3
dρLabelID
C22×D5×Dic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=C22×D5 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C22×D5)⋊1Dic3 = D5×A4⋊C4φ: Dic3/C2S3 ⊆ Out C22×D5606(C2^2xD5):1Dic3480,979
(C22×D5)⋊2Dic3 = C2×A4⋊F5φ: Dic3/C2S3 ⊆ Out C22×D53012+(C2^2xD5):2Dic3480,1191
(C22×D5)⋊3Dic3 = (C2×C6).D20φ: Dic3/C3C4 ⊆ Out C22×D51204(C2^2xD5):3Dic3480,71
(C22×D5)⋊4Dic3 = (C2×C60)⋊C4φ: Dic3/C3C4 ⊆ Out C22×D51204(C2^2xD5):4Dic3480,304
(C22×D5)⋊5Dic3 = C2×D10⋊Dic3φ: Dic3/C6C2 ⊆ Out C22×D5240(C2^2xD5):5Dic3480,611
(C22×D5)⋊6Dic3 = D5×C6.D4φ: Dic3/C6C2 ⊆ Out C22×D5120(C2^2xD5):6Dic3480,623
(C22×D5)⋊7Dic3 = C2×D10.D6φ: Dic3/C6C2 ⊆ Out C22×D5120(C2^2xD5):7Dic3480,1072
(C22×D5)⋊8Dic3 = C23×C3⋊F5φ: Dic3/C6C2 ⊆ Out C22×D5120(C2^2xD5):8Dic3480,1206

Non-split extensions G=N.Q with N=C22×D5 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C22×D5).1Dic3 = C60.28D4φ: Dic3/C3C4 ⊆ Out C22×D51204(C2^2xD5).1Dic3480,34
(C22×D5).2Dic3 = C5⋊(C12.D4)φ: Dic3/C3C4 ⊆ Out C22×D51204(C2^2xD5).2Dic3480,318
(C22×D5).3Dic3 = C60.93D4φ: Dic3/C6C2 ⊆ Out C22×D5240(C2^2xD5).3Dic3480,31
(C22×D5).4Dic3 = D5×C4.Dic3φ: Dic3/C6C2 ⊆ Out C22×D51204(C2^2xD5).4Dic3480,358
(C22×D5).5Dic3 = C2×C20.32D6φ: Dic3/C6C2 ⊆ Out C22×D5240(C2^2xD5).5Dic3480,369
(C22×D5).6Dic3 = C30.7M4(2)φ: Dic3/C6C2 ⊆ Out C22×D5240(C2^2xD5).6Dic3480,308
(C22×D5).7Dic3 = C2×C60.C4φ: Dic3/C6C2 ⊆ Out C22×D5240(C2^2xD5).7Dic3480,1060
(C22×D5).8Dic3 = C2×C12.F5φ: Dic3/C6C2 ⊆ Out C22×D5240(C2^2xD5).8Dic3480,1061
(C22×D5).9Dic3 = C60.59(C2×C4)φ: Dic3/C6C2 ⊆ Out C22×D51204(C2^2xD5).9Dic3480,1062
(C22×D5).10Dic3 = C2×D5×C3⋊C8φ: trivial image240(C2^2xD5).10Dic3480,357

׿
×
𝔽